5,6-epoxyeicosatrienoic acid mediates the enhanced renal vasodilation to arachidonic acid in the SHR.

نویسندگان

  • Silvia I Pomposiello
  • John Quilley
  • Mairead A Carroll
  • John R Falck
  • John C McGiff
چکیده

We have shown a cytochrome P450-dependent renal vasodilator effect of arachidonic acid in response to inhibition of cyclooxygenase and elevation of perfusion pressure, which was enhanced in the spontaneously hypertensive rat (SHR) and linked to increased production of and/or responsiveness to epoxyeicosatrienoic acids (EETs). In the SHR, vasodilation elicited by low doses of arachidonic acid was attenuated by the nitric oxide synthase inhibitor Nw-nitro-L-arginine (50 micromol/L), whereas the responses to high doses were unaffected. Inhibition of epoxygenases with miconazole (0.3 micromol/L) in the presence of Nw-nitro-L-arginine greatly reduced the renal vasodilator response to all doses of arachidonic acid. Tetraethylammonium (10 mmol/L), a nonselective K+ channel blocker, abolished the nitric oxide-independent renal vasodilator effect of arachidonic acid as well as the vasodilator effect of 5,6-EET, confirming that EET-dependent vasodilation involves activation of K+ channels. Under conditions of elevated perfusion pressure (200 mm Hg) and cyclooxygenase inhibition, 5,6-EET, 8, 9-EET, and 11,12-EET caused renal vasodilatation in both SHR and Wistar-Kyoto rats (WKY), whereas 14,15-EET produced vasoconstriction. 5,6-EET was the most potent renal vasodilator of the EET regioisomers in the SHR by a factor of 4 or more. In the SHR, 5,6-EET- and 11,12-EET-induced renal vasodilatation was >2-fold greater than that registered in WKY. Thus, the augmented vasodilator responses to arachidonic acid in the SHR is through activation of K+ channels, and 5,6-EET is the most likely mediator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epoxyeicosatrienoic acid-mediated renal vasodilation to arachidonic acid is enhanced in SHR.

We tested the hypothesis that cyclooxygenase-independent vasodilation produced by arachidonic acid (AA) is mediated by epoxyeicosatrienoic acids (EETs) and is blunted in the spontaneously hypertensive rat (SHR). At normal perfusion pressure (PP; 70 to 90 mm Hg), AA constricted the renal vasculature in both SHR and normotensive Wistar-Kyoto rats, an effect abolished by cyclooxygenase inhibition,...

متن کامل

The role of the cytochrome P450-dependent metabolites of arachidonic acid in blood pressure regulation and renal function: a review.

Arachidonic acid metabolism through the cytochrome P450-dependent monooxygenase system has been the subject of considerable research interest over the last several years. This article reviews the biological actions of the metabolites generated through this pathway and explores their role in the regulation of renal function and systemic blood pressure. Arachidonic acid is metabolized by the cyto...

متن کامل

Pharmacological evaluation of an epoxide as the putative hyperpolarizing factor mediating the nitric oxide-independent vasodilator effect of bradykinin in the rat heart.

A cytochrome P450-derived metabolite of arachidonic acid, namely an epoxyeicosatrienoic acid (EET), has many of the properties of a hyperpolarizing factor that mediates endothelium-dependent, nitric oxide-independent vasodilation. As there are four EET regioisomers, we used pharmacological criteria, based on previous observations with bradykinin (BK), to evaluate which, if any, of the EETs coul...

متن کامل

Epoxyeicosatrienoic acids affect electrolyte transport in renal tubular epithelial cells: dependence on cyclooxygenase and cell polarity.

We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, Madin-Darby canine kidney (MDCK) C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short-circuit current (I(sc)) with kinetics similar to those of arachidonic acid...

متن کامل

Increased CYP2J expression and epoxyeicosatrienoic acid formation in spontaneously hypertensive rat kidney.

Epoxyeicosatrienoic acids (EETs) are major products of cytochrome P450 (CYP)-catalyzed metabolism of arachidonic acid in the kidney. The potent effect of EETs on renal vascular tone and tubular ion and water transport implicates their role in the regulation of renal function and blood pressure. The present study was designed to test the hypothesis that CYP-catalyzed EET formation was altered in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 42 4  شماره 

صفحات  -

تاریخ انتشار 2003